Effect of viscosity on bacterial motility.

نویسندگان

  • W R Schneider
  • R N Doetsch
چکیده

The behavior of a number of motile flagellated bacteria toward viscosity characteristics of their fluid environments was observed. All showed an increase in velocity (micrometers per second) in more viscous solutions. Velocity reached a maximum at a characteristic value, however, and thereafter decreased with higher viscosities. Peritrichously flagellated bacteria had maximum velocities at higher viscosities than polarly flagellated bacteria. Effects of temperature, and possible utilization of chemical constituents in the viscous solutions, were studied and found to be negligible factors under the experimental conditions used. Different agents produced the same phenomenon, thus indicating that there probably were no chemically induced metabolic effects. Loss of available water and the possibility of a variable energy supply to the flagellar propulsive system were considered but are believed minimal. Theoretically derived thermodynamic equations were utilized and suggest that the conformation of the flagellar helix affects efficiency of propulsion. Such a relationship between helix waveform and velocity was experimentally observed with Thiospirillum jenese.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Motility of Helicobacter pylori in a viscous environment.

BACKGROUND Patients with gastroduodenal disease produce gastric mucus of higher viscosity, and mucins that are of a smaller size, than normal. We have modelled these changes to the mucus layer in solutions of methylcellulose, and measured bacterial motility in biopsied mucus, to assess how they might influence the movements of Helicobacter pylori. METHODS Motilities of Helicobacter pylori wer...

متن کامل

Measurement of motility of Helicobacter pylori, Campylobacter jejuni, and Escherichia coli by real time computer tracking using the Hobson BacTracker.

AIMS (1) To make precise measurements and comparisons of various aspects of motility of three gastrointestinal pathogens, Helicobacter pylori, Campylobacter jejuni, and Escherichia coli, in log phase growth; (2) to provide background information on motility data to study the influence of pH, viscosity, and chemotactic factors, thereby gaining a better understanding of bacterial pathogenesis. ...

متن کامل

The effect of enzymes on semen viscosity in Llamas and Alpacas.

The effect of four enzymes: collagenase, fibrinolysin, hyalurodinase, and trypsin were recorded on the viscosity, motility, percent live spermatozoa and acrosome integrity of Llama and Alpaca semen. Semen samples were collected using a modified artificial vagina for each of the five llamas and five alpacas. A 25% solution of the of enzyme at a concentration of 1mg/ml was added to the ejaculate....

متن کامل

Papain and its inhibitor E-64 reduce camelid semen viscosity without impairing sperm function and improve post-thaw motility rates.

In camelids, the development of assisted reproductive technologies is impaired by the viscous nature of the semen. The protease papain has shown promise in reducing viscosity, although its effect on sperm integrity is unknown. The present study determined the optimal papain concentration and exposure time to reduce seminal plasma viscosity and investigated the effect of papain and its inhibitor...

متن کامل

Evaluation of Wi-Fi Radiation Effects on Antibiotic Susceptibility, Metabolic Activity and Biofilm Formation by Escherichia Coli 0157H7, Staphylococcus Aureus and Staphylococcus Epidermis

Background: The radiation emitted from electromagnetic fields (EMF) can cause biological effects on prokaryotic and eukaryotic cells, including non-thermal effects. Objective: The present study evaluated the non-thermal effects of wireless fidelity (Wi-Fi) operating at 2.4 GHz part of non-ionizing EMF on different pathogenic bacterial strains (Escherichia coli 0157H7, Staphylococcus aureu...

متن کامل

Motility induced changes in viscosity of suspensions of swimming microbes in extensional flows.

Suspensions of motile cells are model systems for understanding the unique mechanical properties of living materials which often consist of ensembles of self-propelled particles. We present here a quantitative comparison of theory against experiment for the rheology of such suspensions in extensional flows. The influence of motility on viscosities of cell suspensions is studied using a novel ac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 117 2  شماره 

صفحات  -

تاریخ انتشار 1974